Voronoï region-based adaptive unsupervised color image segmentation
نویسندگان
چکیده
Color image segmentation is a crucial step in many computer vision and pattern recognition applications. This article introduces an adaptive and unsupervised clustering approach based on Vorono¨ı regions, which can be applied to solve the color image segmentation problem. The proposed method performs region splitting and merging within Vorono¨ı regions of the Dirich-let Tessellated image (also called a Vorono¨ı diagram) , which improves the efficiency and the accuracy of the number of clusters and cluster centroids estimation process. Furthermore, the proposed method uses cluster centroid proximity to merge proximal clusters in order to find the final number of clusters and cluster centroids. In contrast to the existing adaptive unsupervised cluster-based image segmentation algorithms, the proposed method uses K-means clustering algorithm in place of the Fuzzy C-means algorithm to find the final segmented image. The proposed method was evaluated on three different unsupervised image segmentation evaluation benchmarks and its results were compared with two other adaptive unsupervised cluster-based image seg-mentation algorithms. The experimental results reported in this article confirm that the proposed method outperforms the existing algorithms in terms of the quality of image segmentation results. Also, the proposed method results in the lowest average execution time per image compared to the existing methods reported in this article.
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملRegion-based retrieval: coarse segmentation with fine color signature
The two major problems raised by a region-based image retrieval system are the automatic definition and description of regions. In this paper we first present a technique of unsupervised coarse detection of regions which improves their visual specificity. The segmentation scheme is based on the classification of Local Distributions of Quantized Colors (LDQC). The Competitive Agglomeration (CA) ...
متن کاملPerformance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملClustering Based Region Growing Algorithm for Color Image Segmentation
We propose an image segmentation method based on combining unsupervised clustering in the color space with region growing in the image space. No ‘a priori’ knowledge is required about the number of regions in the image. The algorithm is useful for marker extraction or complete segmentation of multidimensional, and in particular color, images. The running time depends mostly upon the speed of th...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 65 شماره
صفحات -
تاریخ انتشار 2017